Computational Analysis and Design of Bridge Structures

Author: Chung C. Fu
Publisher: CRC Press
ISBN: 9781138748378
Format: PDF, Mobi
Download Now
Gain Confidence in Modeling Techniques Used for Complicated Bridge Structures Bridge structures vary considerably in form, size, complexity, and importance. The methods for their computational analysis and design range from approximate to refined analyses, and rapidly improving computer technology has made the more refined and complex methods of analyses more commonplace. The key methods of analysis and related modeling techniques are set out, mainly for highway bridges, but also with some information on railway bridges. Special topics such as strut-and-tie modeling, linear and nonlinear buckling analysis, redundancy analysis, integral bridges, dynamic/earthquake analysis, and bridge geometry are also covered. The material is largely code independent. The book is written for students, especially at MSc level, and for practicing professionals in bridge design offices and bridge design authorities worldwide. Effectively Analyze Structures Using Simple Mathematical Models Divided into three parts and comprised of 18 chapters, this text: Covers the methods of computational analysis and design suitable for bridge structures Provides information on the methods of analysis and related modeling techniques suitable for the design and evaluation of various types of bridges Presents material on a wide range of bridge structural types and is fairly code independent Computational Analysis and Design of Bridge Structurescovers the general aspects of bridges, bridge behavior and the modeling of bridges, and special topics on bridges. This text explores the physical meanings behind modeling, and reveals how bridge structures can be analyzed using mathematical models.

Computational Analysis and Design of Bridge Structures

Author: Chung C. Fu
Publisher: CRC Press
ISBN: 9781466579842
Format: PDF, ePub, Mobi
Download Now
Gain Confidence in Modeling Techniques Used for Complicated Bridge Structures Bridge structures vary considerably in form, size, complexity, and importance. The methods for their computational analysis and design range from approximate to refined analyses, and rapidly improving computer technology has made the more refined and complex methods of analyses more commonplace. The key methods of analysis and related modeling techniques are set out, mainly for highway bridges, but also with some information on railway bridges. Special topics such as strut-and-tie modeling, linear and nonlinear buckling analysis, redundancy analysis, integral bridges, dynamic/earthquake analysis, and bridge geometry are also covered. The material is largely code independent. The book is written for students, especially at MSc level, and for practicing professionals in bridge design offices and bridge design authorities worldwide. Effectively Analyze Structures Using Simple Mathematical Models Divided into three parts and comprised of 18 chapters, this text: Covers the methods of computational analysis and design suitable for bridge structures Provides information on the methods of analysis and related modeling techniques suitable for the design and evaluation of various types of bridges Presents material on a wide range of bridge structural types and is fairly code independent Computational Analysis and Design of Bridge Structures covers the general aspects of bridges, bridge behavior and the modeling of bridges, and special topics on bridges. This text explores the physical meanings behind modeling, and reveals how bridge structures can be analyzed using mathematical models.

Computational Analysis and Design of Bridge Structures

Author: Chung C. Fu
Publisher: CRC Press
ISBN: 1466579854
Format: PDF
Download Now
Gain Confidence in Modeling Techniques Used for Complicated Bridge Structures Bridge structures vary considerably in form, size, complexity, and importance. The methods for their computational analysis and design range from approximate to refined analyses, and rapidly improving computer technology has made the more refined and complex methods of analyses more commonplace. The key methods of analysis and related modeling techniques are set out, mainly for highway bridges, but also with some information on railway bridges. Special topics such as strut-and-tie modeling, linear and nonlinear buckling analysis, redundancy analysis, integral bridges, dynamic/earthquake analysis, and bridge geometry are also covered. The material is largely code independent. The book is written for students, especially at MSc level, and for practicing professionals in bridge design offices and bridge design authorities worldwide. Effectively Analyze Structures Using Simple Mathematical Models Divided into three parts and comprised of 18 chapters, this text: Covers the methods of computational analysis and design suitable for bridge structures Provides information on the methods of analysis and related modeling techniques suitable for the design and evaluation of various types of bridges Presents material on a wide range of bridge structural types and is fairly code independent Computational Analysis and Design of Bridge Structures covers the general aspects of bridges, bridge behavior and the modeling of bridges, and special topics on bridges. This text explores the physical meanings behind modeling, and reveals how bridge structures can be analyzed using mathematical models.

Simplified LRFD Bridge Design

Author: Jai B. Kim
Publisher: CRC Press
ISBN: 1466566515
Format: PDF, Docs
Download Now
Developed to comply with the fifth edition of the AASHTO LFRD Bridge Design Specifications [2010]––Simplified LRFD Bridge Design is "How To" use the Specifications book. Most engineering books utilize traditional deductive practices, beginning with in-depth theories and progressing to the application of theories. The inductive method in the book uses alternative approaches, literally teaching backwards. The book introduces topics by presenting specific design examples. Theories can be understood by students because they appear in the text only after specific design examples are presented, establishing the need to know theories. The emphasis of the book is on step-by-step design procedures of highway bridges by the LRFD method, and "How to Use" the AASHTO Specifications to solve design problems. Some of the design examples and practice problems covered include: Load combinations and load factors Strength limit states for superstructure design Design Live Load HL- 93 Un-factored and Factored Design Loads Fatigue Limit State and fatigue life; Service Limit State Number of design lanes Multiple presence factor of live load Dynamic load allowance Distribution of Live Loads per Lane Wind Loads, Earthquake Loads Plastic moment capacity of composite steel-concrete beam LRFR Load Rating Simplified LRFD Bridge Design is a study guide for engineers preparing for the PE examination as well as a classroom text for civil engineering students and a reference for practicing engineers. Eight design examples and three practice problems describe and introduce the use of articles, tables, and figures from the AASHTO LFRD Bridge Design Specifications. Whenever articles, tables, and figures in examples appear throughout the text, AASHTO LRFD specification numbers are also cited, so that users can cross-reference the material.

Computational Mechanics in Structural Engineering

Author: F.Y. Cheng
Publisher: Elsevier
ISBN: 9780080529493
Format: PDF, ePub, Mobi
Download Now
The Second Sino-US Symposium Workshop on Recent Advancement of Computational Mechanics in Structural Engineering was held between May 25-28, 1998, in Dalian, China. The objectives were: to share the insights and experiences gained from recent developments in theory and practice; to assess the current state of knowledge in various topic areas of mechanics and computational methods and to identify joint research opportunities; to stimulate future cooperative research and to develop joint efforts in subjects of common needs and interests; to build and to strengthen the long-term bilateral scientific relationship between academic and professional practicing communities. Topics discussed covered the entire field of computational structural mechanics. These topics have advanced broad applications in the engineering practice of modern structural analysis, design and construction of buildings and other structures, and in natural hazard mitigation.

Computational Modelling of Concrete Structures

Author: Nenad Bicanic
Publisher: CRC Press
ISBN: 1138001457
Format: PDF, Mobi
Download Now
The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St Anton am Alberg 2014) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and concrete structures. The conference reviews and discusses research advancements and the applicability and robustness of methods and models for reliable analysis of complex concrete, reinforced concrete and pre-stressed concrete structures in engineering practice. Conference topics and invited papers cover both computational mechanics and computational modelling aspects of the analysis and design of concrete and concrete structures: * Constitutive and Multiscale Modelling of Concrete * Advances in Computational Modelling * Time Dependent and Multiphysics Problems * Performance of Concrete Structures The book is of special interest to researchers in computational concrete mechanics, as well as industry experts in complex nonlinear simulations of concrete structures.

Bridge Design and Evaluation

Author: Gongkang Fu
Publisher: John Wiley & Sons
ISBN: 0470422254
Format: PDF, Kindle
Download Now
Covering all bridge systems (substructure and superstructure) in one succinct, manageable package, Bridge Design and Evaluation presents real-world examples demonstrating both design and evaluation using LRFD and LRFR. This succinct, real-world approach to complete bridge system design and evaluation presents the fundamentals of the topic without expanding needlessly on advanced or specialized topics. Written for a 3-4 credit course at the undergraduate or graduate level, this Load and Resistance Factor Design (LRFD) and Load and Resistance Factor ...

The History of the Theory of Structures

Author: Karl-Eugen Kurrer
Publisher: John Wiley & Sons
ISBN: 3433601348
Format: PDF, Docs
Download Now
This book traces the evolution of theory of structures and strength of materials - the development of the geometrical thinking of the Renaissance to become the fundamental engineering science discipline rooted in classical mechanics. Starting with the strength experiments of Leonardo da Vinci and Galileo, the author examines the emergence of individual structural analysis methods and their formation into theory of structures in the 19th century. For the first time, a book of this kind outlines the development from classical theory of structures to the structural mechanics and computational mechanics of the 20th century. In doing so, the author has managed to bring alive the differences between the players with respect to their engineering and scientific profiles and personalities, and to create an understanding for the social context. Brief insights into common methods of analysis, backed up by historical details, help the reader gain an understanding of the history of structural mechanics from the standpoint of modern engineering practice. A total of 175 brief biographies of important personalities in civil and structural engineering as well as structural mechanics plus an extensive bibliography round off this work.

Prestressed Concrete Bridges

Author: Nigel R. Hewson
Publisher: Thomas Telford
ISBN: 9780727732231
Format: PDF, Docs
Download Now
Prestressed concrete decks are commonly used for bridges with spans between 25m and 450m and provide economic, durable and aesthetic solutions in most situations where bridges are needed. Concrete remains the most common material for bridge construction around the world, and prestressed concrete is frequently the material of choice.